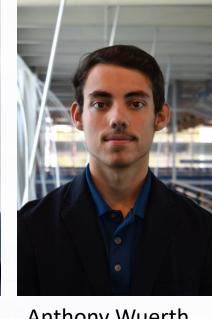

JTEKT Bearing Painter VDR 6

Senior Design Team 515

Team Introductions

Mason Gibson Manufacturing Engineer



Max Jones Project Manager & Control Engineer

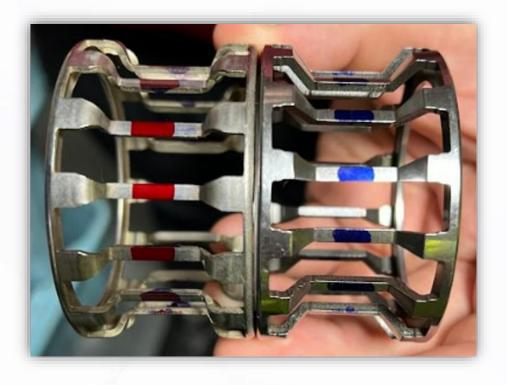
Andrew McClung Systems Integration Engineer

Anthony Wuerth Manufacturing & Design Engineer

Sponsors and Advisor

Engineering Mentor Coltin Fortner *Mechanical Engineer JTEKT North America*

Engineering Mentor Joshua Jones Senior Product Engineer JTEKT North America



<u>Academic Advisor</u> Shayne McConomy, Ph.D. Senior Design Professor

FAMU-FSU College of Engineering

Project Objective

The objective of this project is to automate the process of painting needle bearing retainers.

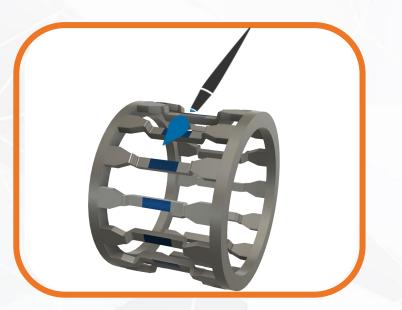
Project Overview

Maximilian Jones

Background

- Creates line contact using rollers
- Commonly used in \bullet transmissions
- The retainer houses the rollers

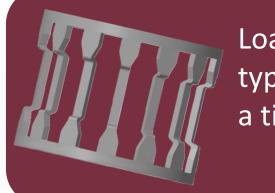
Paint is used by \bullet customers to identify different parts



- Currently hand- \bullet painted under a fume hood
- Roughly 200 are ulletneeded per month but this may be increasing

Key Goals

Accurately Apply Metal Paint to the Bearing Accommodate Bearings from 7/8-2 ½ in. (Outer Diameter)


Automate Bearing Painting Process

Max Jones

Assumptions

Loaded with one type of bearing at a time

A standard 120V wall outlet is available

Paint with one color per load

Customer Design Needs

Accommodate Different Sized Bearings

Fit Into Existing Fume Hood

Customer Performance Needs

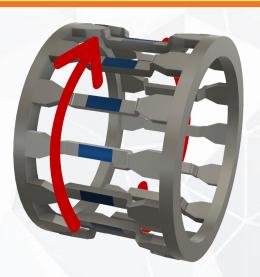
Fully Automated (except loading)

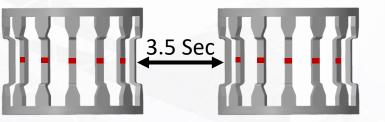
Able to load 10 bearings at a time

10

3.5 Second Cycle Time

Paint Non-Working Surface Only

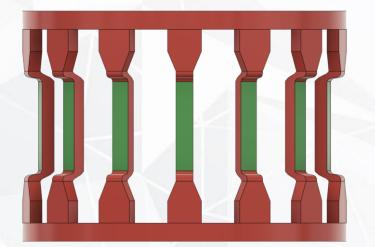


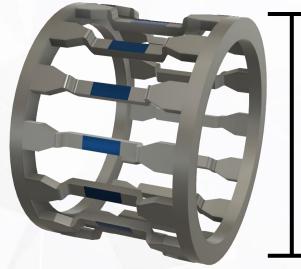

Critical Targets

Consistently paint full 360° of retainers

Cycle time of 3.5 seconds

Fit inside a pre-existing fume hood (2ft. X 3ft. X 3ft.)



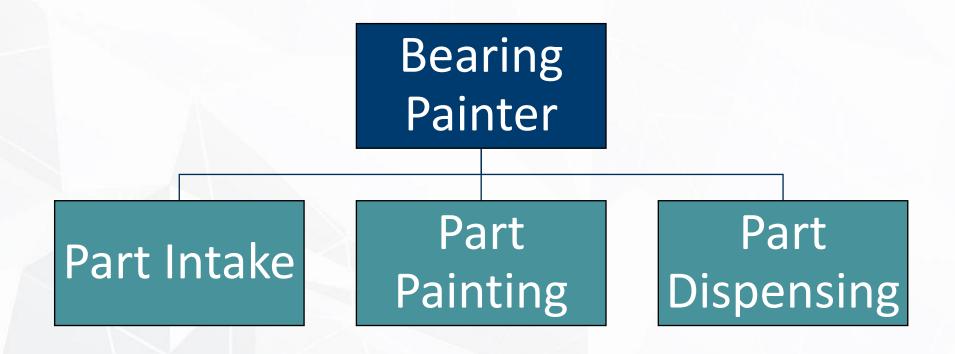


Critical Targets

Limit extraneous paint on working surface to 1 mm²

Accommodate retainers from 7/8 to 2 ½ inches in diameter

Outer Diameter


Ideation and Selection

Mason Gibson

Mason Gibson

Defined Systems

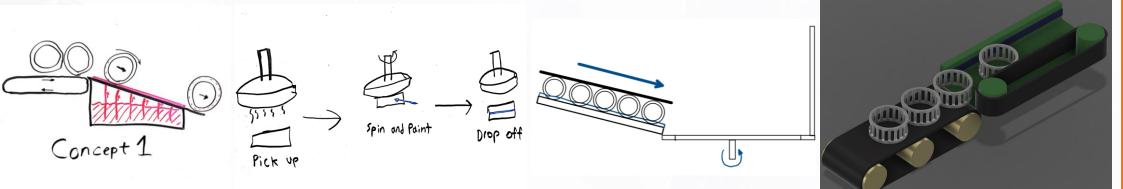
System Responsibilities

Part Intake

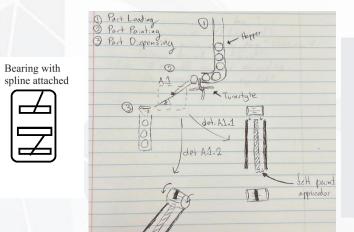
- Controls flow of parts into the device
- Allows for easy loading/removal

Part Painting

- Paints each part
- Pushes parts from Intake to Dispensing


Part Dispensing

- Maintains integrity of
 - painted surfaces
- Allows for easy removal
- Signals end of cycle

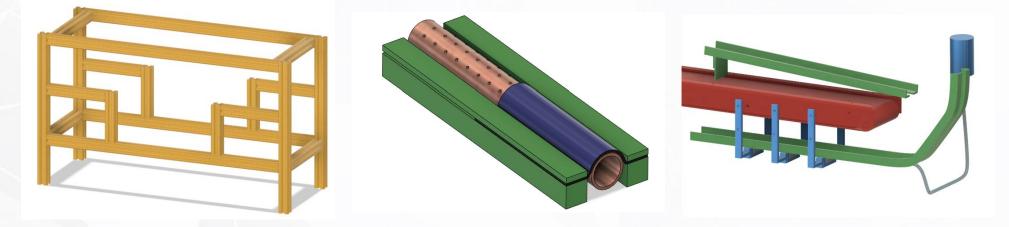

Ideation

 \square

Cylinder with retractable spline

16

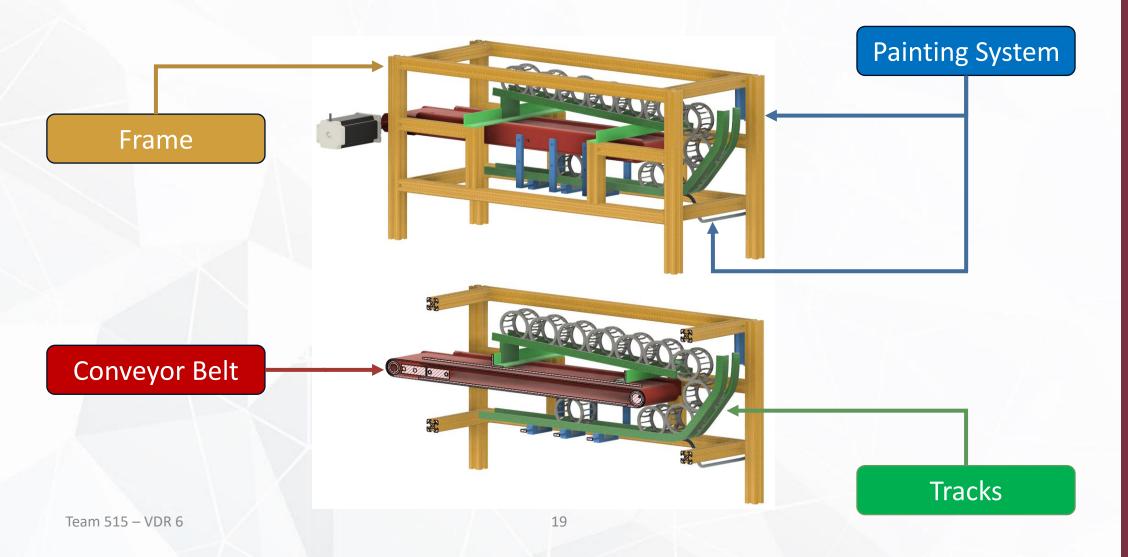
Selected Concept (Inverted Treadmill)


Key Features

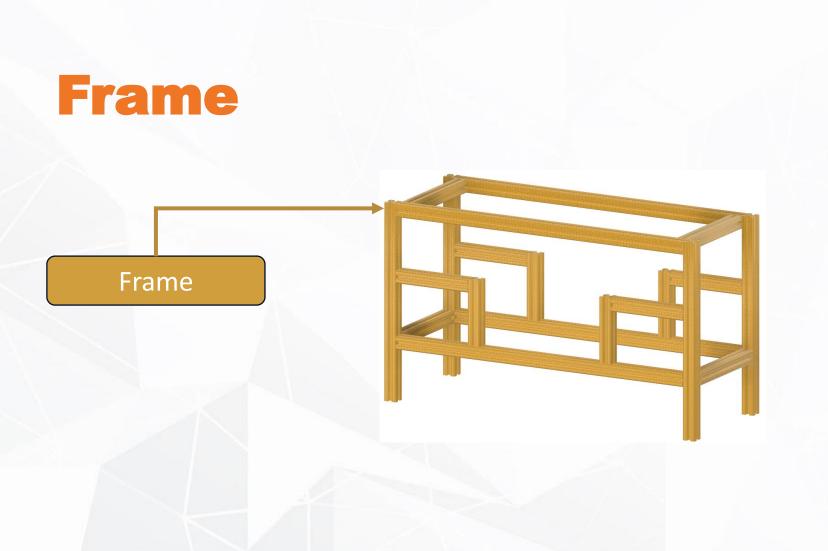
- Parts are moved along a belt to a surface with Dykem
- Pushed along the Dykem by the bottom of the belt
- Allows for compact design

Mason Gibson

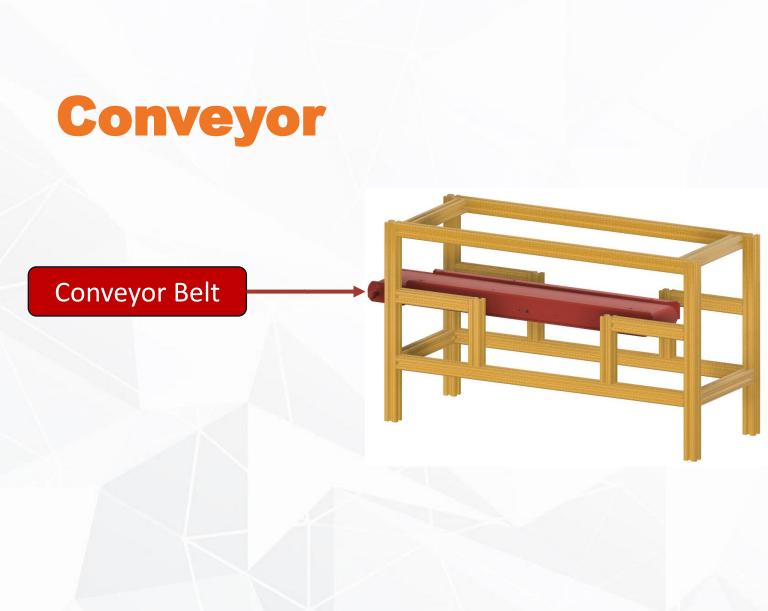
Concept Refining

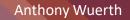

Open Frame Concept

Pressure Head Painting System


Removal of Pinch Point

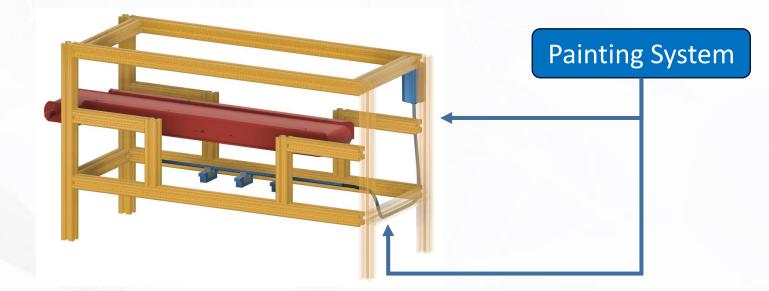
Final Design Overview

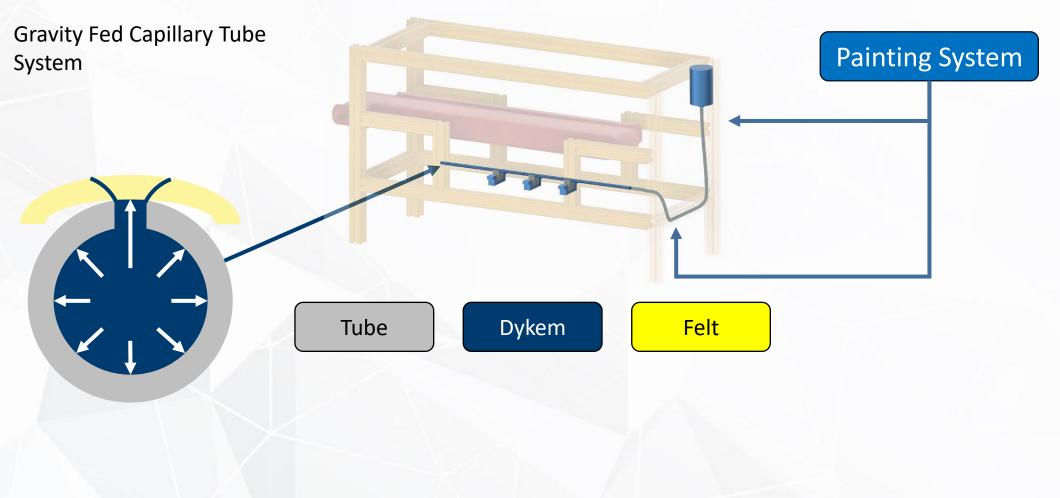


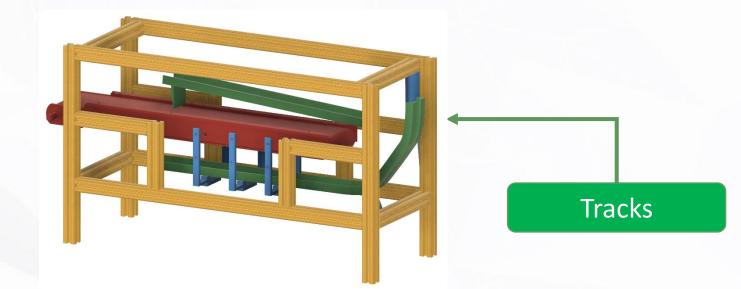


Conveyor

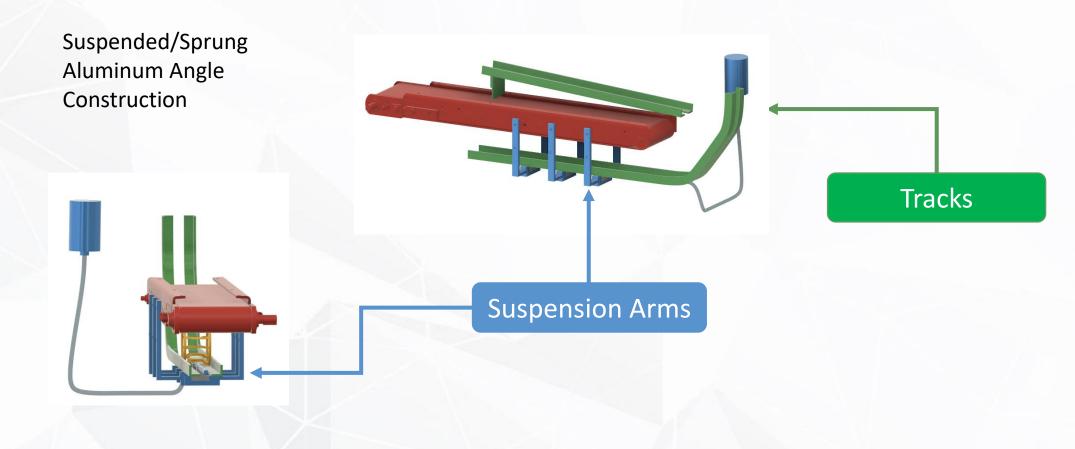
Conveyor Belt


Pre-made Belt and Tensioner Assembly

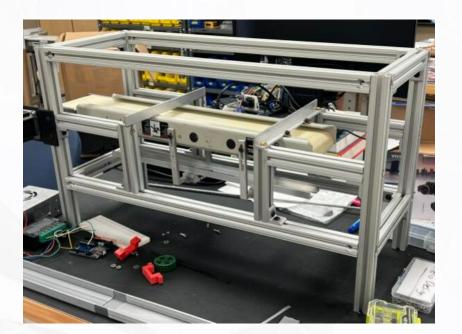

Painting System


FAMU-FSU College of Engineering

Painting System

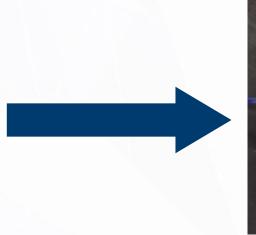


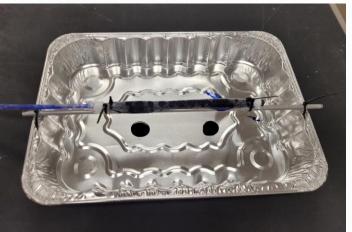
Track System



Track System

Physical Design Overview


Results


Andrew McClung

Painting System Testing

- Confirmed that the tubing is effective for painting
- Raised concern about directly connecting a bottle of Dykem to the tube

Painting System Testing

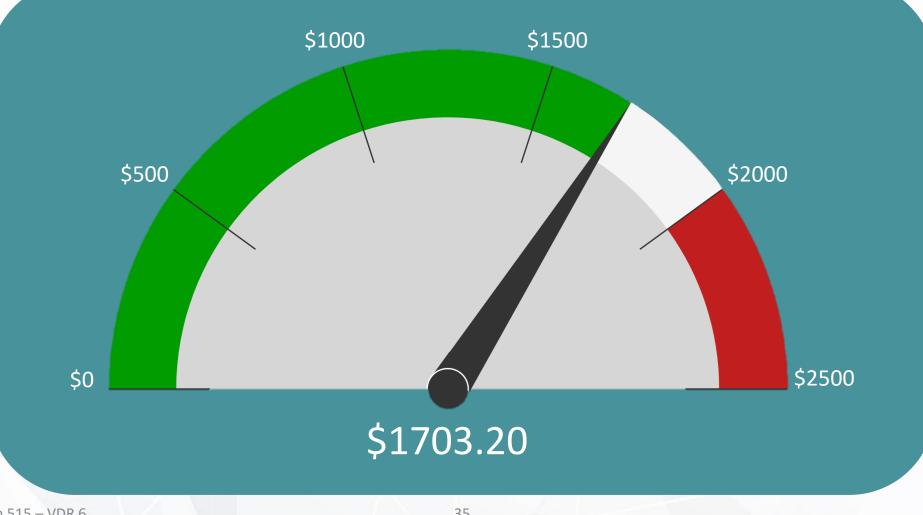


Painting System Testing

Machine Processed

Hand Painted at JTEKT

Validation	
Target	Result
Paint 360° of retainer	Continuous paint all the way around, easy to identify the color
3 ½ second cycle time	Anticipate a cycle time closer to 1.5-2.5 seconds (In the process of testing)
Limit Extraneous paint on working surface to 1 mm ²	Plan on validating next week, will run a full cycle of 10 bearings and average the results
Retainer diameters from 7/8 to 2 ½ inches	Accepts bearings from 2.97in to 0.97in (need 0.10in shim for smallest bearing)
Fit in fume hood 41in x 24in x 18in	Project dimensions are 29.5in x 15in x 14.5in, this leaves plenty of room for the user to operate



Budget

Andrew McClung

Project Budget

Project Budget \$147.90 \$139.38 \$115.92 \$1,300

- Structural Components
- Paint System Components
- Electrical Components
- Conveyor Belt

Project Budget

Name	Unit Cost	Quantity	Total
Aluminum Extrusion	\$5.30 /ft.	19 ft.	\$100.70
Corner Bracket	\$2.36	20	\$47.20
Felt Strip	\$2.59 /ft.	50 ft.	\$129.50
Aluminum Pipe	\$9.88 /ft.	1	\$9.88
AC to DC power supply	\$59.00	1	\$59.00
Stepper Motor	\$23.02	1	\$23.02
Stepper Motor Driver	\$20.00	1	\$20.00
Microcontroller	\$13.90	1	\$13.90
Conveyor Belt	~ \$1300	1	~ \$1300
			\$1703.20

Closing Content

Wesley Jean-Pierre

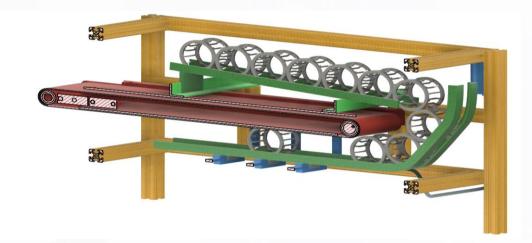
Team 515 – VDR 6

Incomplete Work

Part Intake

Installing intake system

Part Dispensing


Installing dispensing system

• Electrical

Installing toggle switch

Testing

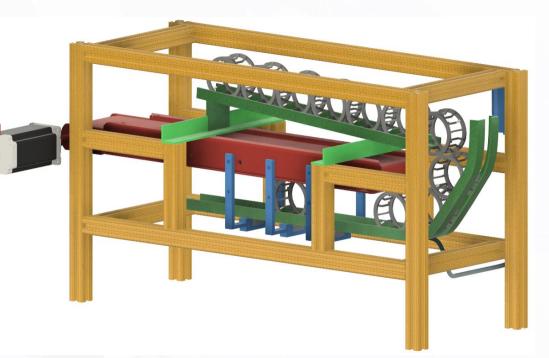
- Testing a batch of 10 bearings together
- Switching between different colors of Dykem

Wesley Jean-Pierre

Lessons Learned

Summary

Objective


 Automate the process of painting needle bearing retainers

• Targets

 Fully operational retainer painting device under \$2000

Design

- A motor, conveyor, and track mounted to an aluminum frame, which rolls the retainers over a felt painting strip
- Outcome
 - A design that successfully paints bearing in the nonworking surface area

Wesley Jean-Pierre

Questions?

Contacts

Mason Gibson mgibson5@fsu.edu

Wesley Jean-Pierre

wj19b@fsu.edu

Max Jones mcj19a@fsu.edu

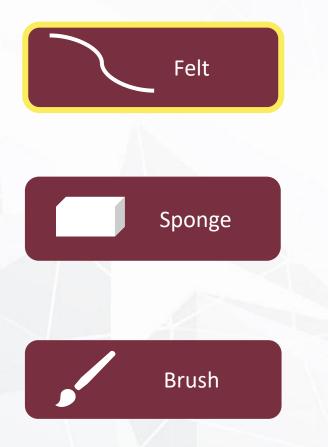
43

7

Anthony Wuerth amwuerth@fsu.edu

Team 515 - VDR 6

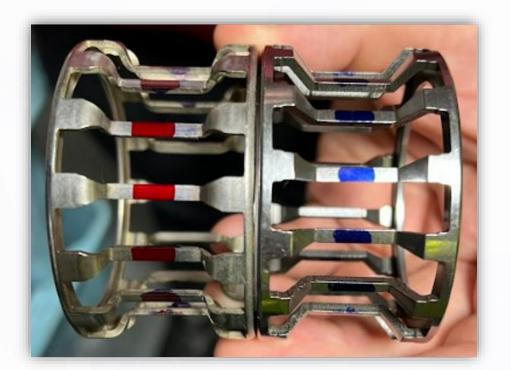
Backup Slides

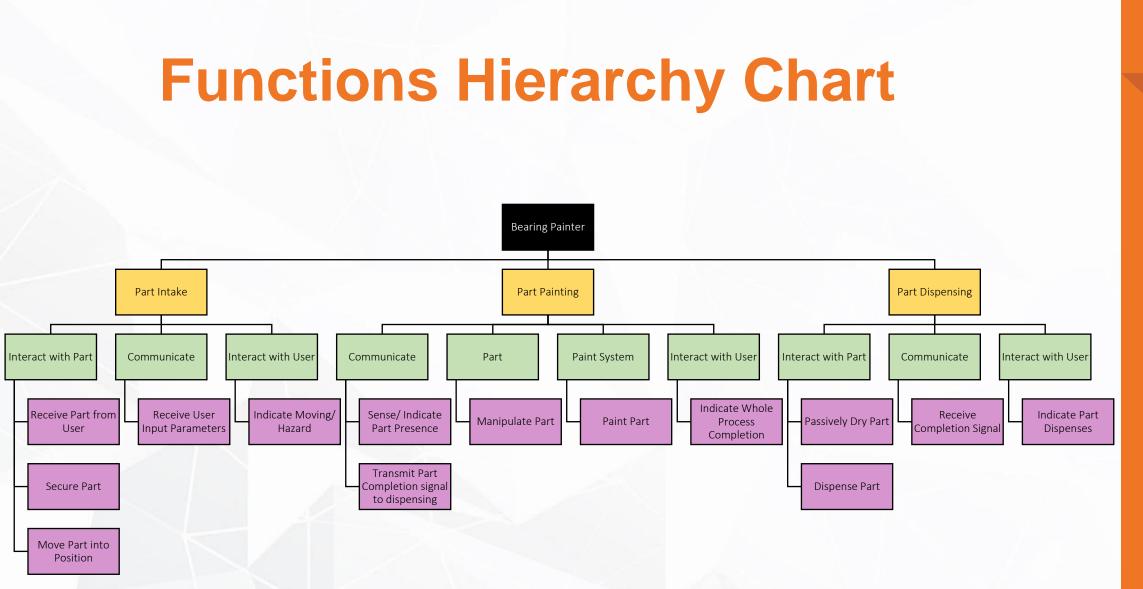

Product Budget

Name	Unit Cost	Quantity	Total
QC Conveyors IS125	~ \$1300	1	~ \$1300
Felt Strip, 2 in. wide, 1/16 in. thick	\$2.59 /ft.	50 ft.	\$129.50
1 in. x 1 in. T-slot Aluminum Extrusion	\$5.30 /ft.	19 ft.	\$100.70
Mean Well AC to DC power supply	\$59.00	1	\$59.00
Inside Corner Bracket for T-slot framing	\$2.36	20	\$47.20
NEMA 23 Stepper Motor	\$23.02	1	\$23.02
TB6600 Stepper Motor Driver	\$20.00	1	\$20.00
RexQualis Uno R3 board	\$13.90	1	\$13.90
Al 6061 1/8 in pipe	\$9.88 /ft.	1	\$9.88
515 – VDR 5	4	.5	\$1703.20

Anthony Wuerth

Testing Procedure




Retainer Painting

Some Customers Require Part Marking To Help Distinguish Similar Parts

- Low Production Runs
- Tedious, Manual Process
 - Operator Pulled From Position
 - Decreased Efficiency

	Binary Pairwise Comparison Chart								
Customer Requirements	1	2	3	4	5	6	7	8	Total
1. Atomated Process	-	1	0	0	0	1	0	1	3
2. Cycle Time	0	-	1	0	0	1	0	1	3
3. Paint Correct Area	1	0	-	1	1	1	1	1	6
4. Fit in Fume Hood	1	1	0	-	0	1	0	1	4
5. Process Range of Sizes	1	1	0	1	-	1	0	1	5
6. Quickly Configurable	0	0	0	0	0	-	0	1	1
7. Use Multiple Colors	1	1	0	1	1	1	-	0	5
8. Indicate Operation Status	0	0	0	0	0	0	1	-	1
Total	4	4	1	3	2	6	2	6	n - 1 = 7

Binary Pairwise Comparison

Function

- Tool to assist in ranking the importance of customer requirements
- Assigns each requirement an importance weight factor
- Requirements and weight factors assist in the development of the House of Quality

Results

The 3 most important requirements were found to be:

- 1. Paint correct area
- 2. Process range of sizes
- 3. Use multiple colors

Engineering Characteristic									
			neering		SUC		1		i
Improvement Direction	Improvement Direction		-	Î	\downarrow	Î	\downarrow	\downarrow	-
Units		Part/min	mm^2	Diameter	Sqft	Part/Load	%	%	Part/invl
Customer Requirements	Importance Weight Factor	Production Rate	Processing Accuracy	Compatibility	Size	Part Intake Limit	Automatic Operation %	Reliability	Maintenance Interval
1. Atomated Process	3	9		3	9	9	9		
2. Cycle Time	3	3	9	9		9	9	3	3
3. Paint Correct Area	6	1	9	9				1	1
4. Fit in Fume Hood	4			3	9	9			
5. Process Range of Sizes	5	1	9	9	9	3	9		
6. Quickly Configurable	1	3	3	9	3	9	3		
7. Use Multiple Colors	5	3	3		9	3	3	1	3
8. Indicate Operation Status	1	3		1		3	3	3	1
Raw Score (628)		68	144	157	156	132	120	23	31
Relative Weight %		10.83	22.93	25.00	24.84	21.02	19.11	3.66	4.94
Ra	nk Order	6	3	1	2	4	5	8	7

FAMU-FSU College of Engineering

Andrew McClung

House of Quality

Part Intake Limit

Automatic Operation %

Reliability

Maintenance Interval

					Concepts		1			
	Engineering Characteristics	RANDBRIG HT RB 60	Linear Processor	Inverted Treadmill	Double Conveyor	Felt Ramp	Electromagnet	Spline	Pore Track	Gravity Ramp
	Compatibility		S	S	-	S	-	S	+	+
1	Size		S	+	S	+	S	S	-	-
	Part Intake Limit	- F	S	+	S	S	S	S	S	S
	Processing Accuracy	MU	S	S	S	-	-	S	S	-
	Automatic Operation %	IAI	S	+	+	S	+	S	S	-
	Total Pluses	<u>ц</u> -	0	3	1	1	1	0	1	1
	Total Satisfactory		5	2	3	3	2	5	3	1
	Total Minuses		0	0	1	1	2	0	1	3

		Concepts			
Engineering Characteristics	Linear Procesor	Inverted Treadmill	Double Conveyor	Felt Ramp	Pore Track
Compatibility		S	S	+	-
Size		+	S	-	-
Part Intake Limit	- V	+	+	S	S
Processing Accuracy	DATUM	+	+	-	-
Automatic Operation %		+	+	S	S
Total Pluses	-	4	3	1	0
Total Satisfactory		1	2	2	2
Total Minuses		0	0	2	3

				[C] M	atrix			
		Analytical Hierarchy Process	А	А	А	А	А	
2	В	Engineering Charactersitic	Compatibility	Size	Part Intake Limit	Processing Accuracy	Automatic Operation %	Average
	В	Compatibility	1	3.000	3.000	7.000	5.000	3.800
	В	Size	0.333	1	0.333	5.000	0.333	1.400
T	В	Part Intake Limit	0.333	3.000	1	7.000	1.000	2.467
	В	Processing Accuracy	0.143	0.200	0.143	1	0.200	0.337
	В	Automatic Operation %	0.200	3.000	1.000	5.000	1	2.040
		Total	2.010	10.200	5.476	25.000	7.533	10.044
		Average	0.402	2.040	1.095	5.000	1.507	

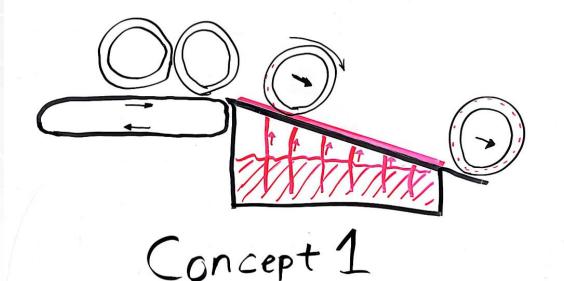
Concept	Alternative Value
Inverted Treadmill	0.401
Double Conveyor	0.271
Felt Ramp	0.327

Analytical Hierarchy Process

Function

- Utilizes matrices to compare importance of criteria
- Criteria are Engineering characteristics & design concepts

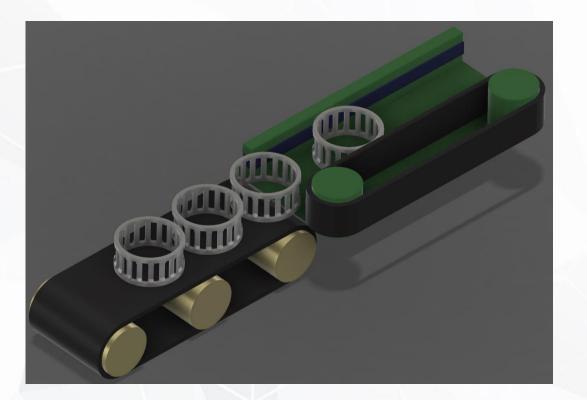
Results


- Compatibility is the highest weighted engineering characteristic
- Inverted Treadmill with the highest rating of importance on criteria

Concept	Alternative Value
Inverted Treadmill	0.401
Double Conveyor	0.271
Felt Ramp	0.327

Mason Gibson

Medium Fidelity Concept 1



Key Features

- Conveyor belt feeds the bearings
- Bearing rolls down a ramp to be painted
- Paint felt strip fed by a reservoir of Dykem underneath

High Fidelity Concept 3 (Double Conveyor)

Key Features

- Belt brings the parts into the painting system
- One belt moves the parts along while the other side paints
- Benchmarked from a labeling machine

- This is 10-point
- This is 15-point Times
- This is 20-point
- This is 25–point
- This is 30-point
- This is 35-point
- This is 40-point
- •This is 50-point
- •This is 60-point

